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Abstract
The spectral density of random graphs with topological constraints is analysed
using the replica method. We consider graph ensembles featuring generalized
degree–degree correlations, as well as those with a community structure. In
each case, a formal exact solution is found for the spectral density in the form
of consistency equations depending on the statistical properties of the graph
ensemble in question. We highlight the effect of these topological constraints
on the resulting spectral density.

PACS numbers: 89.20.−a, 89.75.Hc, 46.65.+g, 87.18.Sn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since Wigner’s seminal work during the 1950s, random matrix theory (RMT) established
itself as a cornerstone of modern theoretical physics, with innumerable applications (see, for
example, [1] and references therein). One central problem of RMT is the determination of the
mean spectral density of an ensemble of random matrices. In some cases, well-understood
universal laws governing the mean spectral density have been known for some time (see, for
instance, [2–4]). However, for ensembles of sparse matrices, i.e. matrices with many entries
being zero, the picture is rather different. Studied first by Rodgers and Bray [5], the spectral
density of real symmetric sparse random matrices has been extensively researched [6–12],
although exact results have only been obtained relatively recently [13–17].

One area of research, in which sparse random matrices feature heavily, is in the modelling
of real-world complex networks, with applications in fields as diverse as bioinformatics and
finance. In the investigation of spectral density, the most commonly studied random graph
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ensembles are those in which the degrees of neighbouring vertices become independent in the
limit N → ∞. This class includes the classical Erdős–Rényi (or Poissonian) random graphs
[5–7, 10–12, 15] and graphs with a specified degree distribution [14, 17]. Unfortunately, these
simple ensembles may not provide realistic models for real-world complex networks which can
include features such as correlations between non-neighbouring vertices, or groups of vertices
organized into highly connected communities [18]. Very few results have been obtained for
random graph ensembles with more complex topologies, though there exists an approximation
scheme for graphs with degree–degree correlations [8] and numerical investigations of some
other ensembles [19].

In this paper, we extend the analysis of the spectral density of random graphs to complex
networks with the features described above. In order to achieve this we consider graphs with
hierarchically constrained topologies. Introduced in [20, 21], such ensembles can be tuned to
more closely reflect the statistics of a real graph, whilst remaining in a form for which large N
computations are tractable. We also propose a simple generalization of this ensemble to one
featuring a community structure.

Applying the replica method, expressions are found for spectral densities of these
ensembles in terms of the statistical properties of the graphs. For the purpose of clarity,
we only show here the calculations for the spectral density of connectivity matrices; however,
the techniques can just as well be applied to more general sparse random matrices. This is
possible even in the case of non-Hermitian matrices following a scheme similar to that set out
in [22].

The ensemble definitions are given in section 2. In the third section, we prepare for
the calculation of the spectral density by first computing relevant statistical properties of the
graph ensembles, gaining some insight to the problem on the way. Section 4 contains the
replica calculation itself, both for the hierarchically constrained ensemble and for graphs with
a community structure. Several applications are discussed in section 5, where analytical
findings of the resulting spectral densities are compared with numerical diagonalizations. The
final section contains a summary and discussion.

2. Ensemble definitions

Let G = (V ,E) be a graph on a set V = {1, . . . , N} of vertices and E ⊆ V × V of edges.
The latter set is usually represented by the connectivity matrix C, whose entries are cij = 1 if
(i, j) ∈ E, and cij = 0 otherwise ∀ i, j ∈ V . We define the �th generalized degree of a vertex
i, denoted as k

(�)
i (C), to be the total number of walks of length � starting at vertex i. In terms

of the connectivity matrix, this is given by the recursive definition

k
(0)
i (C) = 1, k

(�)
i (C) =

N∑
j=1

cij k
(�−1)
j (C), � = 1, . . . , L, (1)

for some integer L. We denote ki (C) = (
k

(1)
i (C), . . . , k

(L)
i (C)

)
. Note that the first component

of ki (C) is simply the degree of vertex i, so we will usually refer to it as ki(C), rather
than k

(1)
i (C). The generalized degree of a particular vertex contains information about the

generalized degrees of its neighbours. For instance, if vertex i has degree k and neighbours
{j1, . . . , jk}, then

k
(�)
i (C) =

k∑
t=1

k
(�−1)
jt

(C) for � = 1, . . . , L. (2)

2



J. Phys. A: Math. Theor. 43 (2010) 195002 T Rogers et al

In what follows we study graph ensembles in which the generalized degrees are constrained.
To achieve this, we follow the scheme set out in [20, 21] and define the weight of the graph
ensemble as

WN(C) =
∏
i<j

[ c

N
Q(ki , kj )δcij ,1 +

(
1 − c

N
Q(ki , kj )

)
δcij ,0

] N∏
i=1

δki (C),ki
, (3)

where the {ki}Ni=1 are taken to be arbitrary, c is the average c = (1/N)
∑N

i=1 ki , and Q(k, k′)
is a symmetric, non-negative function. Note from (3) that for each vertex i, its generalized
degree ki (C) is constrained to be precisely ki . For this reason, we also refer to the {ki}Ni=1 as
generalized degrees.

As mentioned in the introduction, this ensemble is designed to be amenable to analysis
in the large N limit, whilst allowing the topology of the graphs to be tuned by choosing the
generalized degrees {ki} and the function Q(k, k′). This was demonstrated in [21] with the
computation of the entropy of the ensemble, and in [23] the Ising model is analysed on such
graphs in the simpler case of L = 1.

We will also consider an ensemble whose graphs feature community structures. In
such graphs, vertices are organized into densely intra-connected clusters, also called modules
or communities, with a sparse distribution of inter-community edges4. To incorporate this
structure without sacrificing the solvability of the model, we propose a generalization of the
previously introduced ensemble5.

Consider a graph composed of N communities, each of size M (giving a total of NM

vertices). We decompose the connectivity matrix C of this graph into three sets of smaller
matrices: a single N ×N connectivity matrix C with entries cij = 1 if communities i and j are
connected, and zero otherwise; a collection of M × M matrices Bij encoding the connections
between vertices in communities i and j ; and a collection of M × M matrices Ai specifying
the internal connections of community i. For our ensemble, we take the Bij and Ai to be drawn
randomly and independently according to weights μ(B) and ν(A), respectively, whilst C is
taken from the constrained generalized degree ensemble. All together, the weight for this
graph ensemble can be written as follows:

W com
MN (C) =

∏
i<j

[ c

N
Q(ki , kj )δcij ,1μ(Bij ) +

(
1 − c

N
Q(ki , kj )

)
δcij ,0

] N∏
i=1

ν(Ai)δki (C),ki
. (4)

For ease of calculation, we take μ to satisfy μ(B) = μ(BT ).
Exploiting the bridge to statistical mechanics introduced by Edwards and Jones [27],

we will compute the mean spectral density of the connectivity matrices of graphs from both
ensembles in the limit N → ∞ by the replica method. It will be instructive to first analyse the
local statistics of the graphs in the same limit, as this will help us to simplify the subsequent
analysis.

3. Asymptotic graph statistics

For the ensembles of graphs under study, the relevant statistical properties are captured by the
following joint distribution:

P
({qt }kt=1, k

) = lim
N→∞

〈
k

cN

N∑
i=1

δki (C),k

∑
j1<··· <jk

δkj1 (C),q1 · · · δkjk
(C),qk

cij1 · · · cijk

〉
C

, (5)

4 For a nice and complete review on community structures and its importance in complex networks see [18].
5 Very recently, the spectral density of matrices with a particular type of modular form has been studied in [24–26].
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where here, and hereafter, we use 〈· · ·〉C to denote the ensemble average. Note that (5) is the
probability of finding a vertex whose neighbour has generalized degree k and is connected
to k vertices with generalized degrees {qt }kt=1. Other relevant probability distributions can be
obtained by marginalizing expression (5). In particular, by summing with respect to {qt }kt=1
and denoting the resulting distribution as P(k), we obtain

P(k) = lim
N→∞

〈
k

cN

N∑
i=1

δk,ki (C)

〉
C

, (6)

which is the probability of finding a vertex connected to a vertex with generalized degree
k (see, for instance, [28]). Note that since in our ensemble the generalized degrees
are constrained to the arbitrary values {ki}Ni=1, we have that P(k) = p(k)k/c with
p(k) = limN→∞(1/N)

∑N
i=1 δk,ki

being the generalized degree distribution. Other probability
distributions, however, may not have such straightforward forms.

An expression for the distribution (5) can be found through a saddle-point computation,
the details of which will prove to be of great use in the later replica analysis of the spectral
density, as our final equations for the spectral density will be written in terms of certain
marginals of P

({qt }kt=1, k
)
.

3.1. General calculation

To find an expression for P
({qt }kt=1, k

)
, we need to calculate 〈cij1 · · · cijk

〉C . To do so, we
introduce the generating function

ZN(h) =
∑
C

WN(C)
∏
i<j

ehij cij , (7)

with generating fields h = {hij }. This allows us to write〈
cab1 · · · cabk

〉
C

= 1

ZN

∂k

∂hab1 · · · ∂habk

ZN(h)

∣∣∣∣
h=0

, (8)

with ZN = ZN(0). To carry out the calculation of ZN(h), we introduce a Fourier
representation for the Kronecker delta constraints appearing in the definition of the weight (3):

δki (C),ki
=

∫ π

−π

dwi

(2π)L
exp

⎛⎝iwi · ki − i
L∑

�=1

w
(�)
i

N∑
j=1

cij k
(�−1)
j

⎞⎠ , (9)

with wi = (
w

(1)
i , . . . , w

(L)
i

)
. The sum over C may now be performed explicitly, obtaining for

large N〈
cab1 · · · cabk

〉
C

= 1

ZN

(
k∏

t=1

c

N
Q
(
ka, kbt

)) ∫ π

−π

[
N∏

i=1

dwi

(2π)L

]
ei

∑
i wi ·ki

× exp

⎡⎣ c

2N

N∑
i,j=1

Q(ki , kj )
(
e−i

∑L
�=1(w

(�)
i k

(�−1)
j +w

(�)
j k

(�−1)
i ) − 1

)⎤⎦
× exp

[
−i

L∑
�=1

(
w(�)

a

k∑
t=1

k
(�−1)
bt

+ k(�−1)
a

k∑
t=1

w
(�)
bt

)]
. (10)

To integrate out the w-variables and apply saddle-point integration we first need to decouple
terms comprising vertex indices. To achieve this, we introduce the order parameter

φ(k, q) = 1

N

N∑
i=1

δki ,k exp

(
−i

L∑
�=1

w
(�)
i q(�−1)

)
, (11)

4
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allowing us to write the average
〈
cab1 · · · cabk

〉
C

as follows:

〈
cab1 · · · cabk

〉
C

=
〈

ka !
cka

[∏ka

j=1
kbj

N
Q(ka, kbj

)
]
Ika

({kbj
}ka

j=1

)∑
q1,...,qka

ψ(ka, q1) · · ·ψ(ka, qka
)Ika

({qj }ka

j=1

)
×

ka∏
j=1

∑
q1,...,qkbj

−1
ψ
(
kbj

, q1
) · · ·ψ(

kbj
, qkbj

−1
)
Ikbj

(
ka, {qj }kbj

−1

j=1

)
∑

q1,...,qkbj

ψ
(
kbj

, q1
) · · ·ψ(

kbj
, qkbj

)
Ikbj

({qj }kbj

j=1

)
〉

	(φ,ψ)

,

(12)

where we have taken k = ka and have introduced the indicator function

Ik

({qt }kt=1

) =
L∏

�=1

δ
k(�),

∑k
r=1 q

(�−1)
r

, (13)

which enforces the relationship between the generalized degrees of the neighbours of a given
vertex, as noted in (2). The measure in (12) is defined by

〈· · ·〉	(φ,ψ) =
∫ {dφ dψ} eN	(φ,ψ)(· · ·)∫ {dφ dψ} eN	(φ,ψ)

, (14)

with

	(φ,ψ) = −c
∑
k,q

ψ(k, q)φ(k, q) +
c

2

∑
k,q

Q(k, q)φ(k, q)φ(q, k)

+
∑

k

p(k) ln
∑

q1,...,qk

ψ(k, q1) · · ·ψ(k, qk)Ik

({qt }kt=1

)
. (15)

In the limit N → ∞ this measure converges to a functional Dirac delta centred at the saddle
point of 	(φ,ψ). Extremizing 	(φ,ψ), we find saddle-point equations

ψ(k, q) = Q(q, k)φ(q, k), (16a)

φ(k, q) = P(k)

∑
q1,...,qk−1

ψ(k, q1) · · ·ψ(k, qk−1)Ik

(
q, {qt }k−1

t=1

)∑
q1,...,qk

ψ(k, q1) · · ·ψ(k, qk)Ik

({qt }kt=1

) . (16b)

Finally, returning to the definition of P
({qt }kt=1, k

)
, using the preceding result together with

the saddle-point equations (16a) and (16b), we reach

P
({qt }kt=1, k

) = lim
N→∞

k

cN

N∑
i=1

δki ,k

∑
j1<···<jk

δkj1 ,q1 . . . δkjk
,qk

〈
cij1 · · · cijk

〉
C

= P(k)
ψ(k, q1) · · ·ψ(k, qk)Ik

({qt }kt=1

)∑
q1,...,qk

ψ(k, q1) · · ·ψ(k, qk)Ik

({qt }kt=1

) . (17)

It is not our intention to quantify (17) as this requires the solution of the saddle-point equations,
which is a cumbersome task for general values L. It is nonetheless interesting to keep in mind
this result as it will help us to understand the later results for the spectral density. The following
marginals will also be relevant for our subsequent discussion:

(i) The probability P(q, k) of finding a pair of connected vertices with generalized degrees
k and q:

P(q, k) = lim
N→∞

〈
1

cN

N∑
i,j=1

δki (C),k δkj (C),q cij

〉
C

=
∑

q1,...,qk−1

P
({qt }k−1

t=1 , q, k
) = Q(k, q)φ(k, q)φ(q, k), (18)

5
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and its conditional distribution

P(q|k) = P(q, k)/P (k) = Q(k, q)φ(k, q)φ(q, k)

(
k

c
p(k)

)−1

. (19)

(ii) The conditional distribution P
({qt }kt=1|k

)
:

P
({qt }kt=1

∣∣k) = P
({qt }kt=1, k

)/
P(k)

= ψ(k, q1) · · ·ψ(k, qk)Ik

({qt }kt=1

)∑
q1,...,qk

ψ(k, q1) · · ·ψ(k, qk)Ik

({qt }kt=1

) . (20)

(iii) The conditional distribution P
({qt }k−1

t=1

∣∣q, k
)
:

P
({qt }k−1

t=1

∣∣q, k
) = P

({qt }kt=1, k
)/

P(q, k)

= ψ(k, q1) · · · ψ(k, qk−1)Ik

(
q, {qt }k−1

t=1

)∑
q1,...,qk−1

ψ(k, q1) · · ·ψ(k, qk−1)Ik

(
q, {qt }k−1

t=1

) . (21)

3.2. Case L = 1

It is instructive to consider the particular case of L = 1 as it has also been discussed in previous
works (see, for instance, [21, 23]). In this case, the generalized degree k is simply the degree
k. As we only constrain the degrees, the indicator functions in (16b) are identically one, giving

φ(k, q) = P(k)∑
q ψ(k, q)

, ψ(k, q) = Q(k, q)φ(q), (22)

with P(k) = p(k)k/c being the degree distribution of the nearest neighbour of a vertex. Since
the right-hand side of the first preceding equation is independent of q, so is φ(k, q), and
therefore we write φ(k, q) = φ(k). Besides, introducing ψ(k) = ∑

q ψ(k, q), we reach

φ(k) = P(k)

ψ(k)
and ψ(k) =

∑
q

Q(k, q)φ(q). (23)

From this, we obtain simplified expressions for (18) and (19):

P(q, k) = P(k)P (q)
Q(k, q)

ψ(k)ψ(q)
= P(k)

ψ(k, q)

ψ(k)
, (24a)

P(q|k) = P(q)
Q(k, q)

ψ(k)ψ(q)
= ψ(k, q)

ψ(k)
. (24b)

Moreover, this also induces factorization in (20) and (21), giving

P
({qt }kt=1

∣∣k) =
k∏

t=1

P(qt |k) and P
({qt }k−1

t=1

∣∣q, k
) = P

({qt }k−1
t=1

∣∣k). (25)

Suppose further that we have a separable function Q(k, q) = v(k)v(q). Then, from (23) it is
easy to see that

∑
q v(q)φ(q) = ±1, giving the solution ψ(k) = ±v(k). This implies in turn

that P(q|k) = P(q) as expected.
Having gained some understanding of the typical order parameters involved in the

problem, we move on to the explicit calculation of the spectral density.

6
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4. The spectral density of constrained graphs

Suppose C is the connectivity matrix of a random graph belonging to the ensemble under
consideration. It is real and symmetric and hence has N real eigenvalues, which we denote by{
λC

i

}N

i=1. The natural object of study is the mean spectral density in the limit N → ∞:

ρ(λ) = lim
N→∞

〈
1

N

N∑
i=1

δ
(
λ − λC

i

)〉
C

. (26)

To compute (26), we first recast the problem in terms of a Gaussian integral. Following
Edwards and Jones [27], one may write

ρ(λ) = − lim
ε→0+

lim
N→∞

2

πN
Im

∂

∂λ
〈lnZC(λε)〉C , (27)

where λε = λ − iε and ZC is given by

ZC(λε) =
∫ [

N∏
i=1

dxi

]
exp

⎛⎝−i
λε

2

N∑
i=1

x2
i + i

∑
i<j

cij xixj

⎞⎠ . (28)

Ignoring the imaginary units, this object is reminiscent of the partition function of a system
of dynamical variables interacting on a graph, much like the Gaussian ferromagnetic model
introduced in [29].

Reasoning along these lines, the tools of statistical mechanics can be brought to bear
on the calculation of spectral density. In particular, the replica method has been frequently
applied, leading either to approximative schemes [7, 10–12], or more recent exact solutions
[14, 15, 26]. We proceed with the analysis for our ensemble, paying close attention to the
impact of constraining the generalized degrees.

4.1. General calculation

To evaluate the average of the logarithm in (27), we apply the replica method, writing

〈lnZC(λε)〉C = lim
n→0

1

n
ln

〈
Zn

C(λε)
〉
C
, (29)

where the replicated partition function reads

〈
Zn

C(λε)
〉
C

=
∫ [

N∏
i=1

dxi

]
exp

(
−i

λε

2

N∑
i=1

x2
i

)〈
exp

⎛⎝i
∑
i<j

cijxi · xj

⎞⎠〉
C

, (30)

with xi = (
x

(1)
i , . . . , x

(n)
i

)
and dxi = dx

(1)
i · · · dx

(n)
i . As in the previous calculation, we use a

Fourier representation for the Kronecker deltas in the weight (3) to enable us to perform the
ensemble average explicitly, writing, for large N,〈
Zn

C(λε)
〉
C

= 1

ZN

∫ [
N∏

i=1

dxi

]∫ π

−π

[
N∏

i=1

dwi

(2π)L

]
ei

∑N
i=1 wi ·ki− iλε

2

∑N
i=1 x2

i

× exp

⎡⎣ c

2N

N∑
i,j=1

Q(ki , kj )
(
e−i

∑L
�=1(w

(�)
i k

(�−1)
j +w

(�)
j k

(�−1)
i )+ixi ·xj − 1

)⎤⎦ . (31)

To decouple vertices we introduce the following order parameter:

	(x, k, q) = 1

N

N∑
i=1

δki ,kδ(xi − x) exp

(
−i

L∑
�=1

w
(�)
i q(�−1)

)
, (32)

7
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with x = (x(1), . . . , x(n)) and δ(xi −x) = δ
(
x

(1)
i −x(1)

) · · · δ(x(n)
i −x(n)

)
. After enforcing the

order parameter using a functional Dirac delta and rearranging terms, we can write a compact
expression for the replicated partition function〈

Zn
C(λε)

〉
C

=
∫

{d	 d} eNF(	,), (33)

where

F(	,) = −c
∑
k,q

∫
dx (x, k, q)	(x, k, q) − c

2

∑
k,q

p(k)p(q)Q(k, q)

+
c

2

∑
k,q

Q(k, q)

∫
dx dy	(x, k, q)	(y, q, k) eix·y +

∑
k

p(k) ln
ck

k!

×
∫

dx e−i λε
2 x2

∑
q1,...,qk

(x, k, q1) · · ·(x, k, qk)Ik

({qt }kt=1

)
. (34)

The integral (33) can now be evaluated by steepest descent. Extremizing F with respect to 	

and , we obtain the saddle-point equations

(x, k, q) = Q(k, q)

∫
dy 	(y, q, k) eix·y, (35a)

	(x, k, q) = P(k)
e−i λε

2 x2 ∑
q1,...,qk−1

(x, k, q1) · · ·(x, k, qk−1)Ik

(
q, {qt }k−1

t=1

)∫
dy e−i λε

2 y2 ∑
q1,...,qk

(y, k, q1) · · ·(y, k, qk)Ik

({qt }kt=1

) . (35b)

The natural next step in the calculation is to make a replica symmetric ansatz. In the case
of graphs with unconstrained topologies, the correct form for the order parameters has been
recently established as a superposition of Gaussians [13–15]. With a modest amount of
foresight we extend this to the correlated case by writing

	(x, k, q) = φ(k, q)

∫
d�φ(�|k, q)

n∏
α=1

e− 1
2�

(x(α))2

√
2π�

, (36a)

(x, k, q) = ψ(k, q)

∫
d�ψ(�|k, q)

n∏
α=1

e− �
2 (x(α))2

√
2π/�

, (36b)

where we assume that the densities ψ(�|k, q) and φ(�|k, q) are normalized, i.e.∫
d�ψ(�|k, q) = 1 and similarly for φ(�|k, q). Note that the parameter � is generally a

complex variable and d� = d Re� d Im�. Plugging the ansatz into the saddle-point equations
and taking the replica limit n → 0, we obtain

ψ(�|k, q)ψ(k, q) = Q(k, q)φ(�|q, k)φ(q, k), (37a)

φ(�|k, q) =
∑

q1,...,qk−1

{
P(k)

φ(k, q)

ψ(k, q1) · · ·ψ(k, qk−1)Ik

(
q, {qt }k−1

t=1

)∑
m1,...,mk

ψ(k, m1) · · ·ψ(k, mk)Ik

({mt }kt=1

)}

×
∫ [

k−1∏
t=1

d�t ψ(�t |k, qt )

]
δ

(
� − 1

iλε +
∑k−1

t=1 �t

)
. (37b)

Integrating with respect to � in (37a) and (37b) reveals

8
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ψ(k, q) = Q(k, q)φ(q, k), (38a)

φ(k, q) = P(k)

∑
q1,...,qk−1

ψ(k, q1) · · ·ψ(k, qk−1)Ik

(
q, {qt }k−1

t=1

)∑
m1,...,mk

ψ(k, m1) · · · ψ(k, mk)Ik

({mt }kt=1

) , (38b)

and we recognize these equations as precisely the saddle-point equations (16a) and (16b)
in the earlier calculation of the asymptotic graph statistics. This fact is not surprising since
these objects depend only upon the generalized degrees (k, q), and in this regard the order
parameters in both calculations are the same. In turn, this also reveals that the expression
between braces in (37b) is precisely the conditional distribution P

({qt }k−1
t=1 |q, k

)
. All in all,

we can write a self-consistency equation for the density ψ(�|q, k):

ψ(�|q, k) =
∑

q1,...,qk−1

P
({qt }k−1

t=1

∣∣q, k
)

×
∫ [

k−1∏
t=1

d�t ψ(�t |k, qt )

]
δ

(
� − 1

iλε +
∑k−1

t=1 �t

)
. (39)

The simple form of this equation is possible thanks to the link between the order parameters
in this calculation and the asymptotic form of the conditional distribution (21). Moreover,
written in this way, the physical interpretation is clear: ψ(�|q, k) is the conditional density
of the parameter � for a vertex of generalized degree k, given that it has a neighbour of
generalized degree q.

All that remains now is to compute the spectral density. From (27) we can write

ρ(λ) = − lim
ε→0+

lim
n→0

2

πn
Im

∂

∂λ
F(	,)

= lim
ε→0+

1

π
Re

∑
k

p(k)

∫
d�ψphys(�|k)�, (40)

with

ψphys(�|k) =
∑

q1,...,qk

P
({qt }kt=1

∣∣k) ∫ [
k∏

t=1

d�t ψ(�t |k, qt )

]
δ

(
� − 1

iλε +
∑k

t=1 �t

)
. (41)

The calculation is now complete. We have expressed the limiting mean spectral density for
the connectivity matrices of graphs from the ensemble defined by (3) in terms of densities
ψ(�|q, k); moreover, we have found that the consistency equation (39) for these densities is
phrased simply in terms of the asymptotic generalized degree statistics of the graphs.

Although as this calculation has shown that the spectral density of the ensemble studied
here is governed entirely by its generalized degree statistics, we should point out that this is
by no means the general rule.

4.2. Case L = 1

Let us again consider the particular case L = 1. As before the generalized degree k is
simply the degree k, and we have P

({qt }k−1
t=1

∣∣q, k
) = P

({qt }k−1
t=1

∣∣k). This implies that the
left-hand side of (39) does not depend on q, that is ψ(�|q, k) = ψ(�|k). This implies
in turn on the right-hand side of (39) that ψ(�t |k, qt ) = ψ(�t |qt ). Moreover, since
P
({qt }k−1

t=1

∣∣k) = ∏k−1
t=1 P(qt |k) and upon defining ϕ(�|k) = ∑

q P (q|k)ψ(�|q), we can
write the following self-consistency equation for ϕ(�|k):

ϕ(�|k) =
∑

q

P (q|k)

∫ [
q−1∏
t=1

d�t ϕ(�t |q)

]
δ

(
� − 1

iλε +
∑q−1

t=1 �t

)
. (42)

9
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The spectral density is given by

ρ(λ) = lim
ε→0+

1

π
Re

∑
k

p(k)

∫
d�ψphys(�|k)�, (43)

with

ψphys(�|k) =
∫ [

k∏
t=1

d�t ϕ(�t |k)

]
δ

(
� − 1

iλε +
∑k

t=1 �t

)
. (44)

The situation is further simplified if Q is taken to be separable, in which case P(q|k) = P(q)

and we recover the results of [14] for the uncorrelated case.

4.3. Graphs with community structure

We turn our attention to graphs with communities whose ensemble weight is given by (4). In
this situation it is again possible to compute expressions for the mean spectral density of the
ensemble using the replica method. Let us briefly outline the main features of the calculation.

Introducing N vectors {Xi}Ni=1, of M components each, Xi = (xi,1, . . . , xi,M), one may
write

ρ(λ) = − lim
ε→0+

lim
N→∞

2

πNM
Im

∂

∂λ
〈lnZC(λε)〉C, (45)

where 〈· · ·〉C denotes the ensemble average and

ZC(λε) =
∫ [

N∏
i=1

dXi

]
exp

⎛⎝− i

2

N∑
i=1

Xi (λεIM − Ai) XT
i + i

∑
i<j

cijXiBijX
T
j

⎞⎠ , (46)

and dXi = ∏M
m=1 dxi,m. We consider the thermodynamic limit to be given by N → ∞, whilst

M remains fixed and finite. Treating Xi as individual vector-valued dynamical variables the
calculation proceeds as usual via the replica method. The order parameters take the same form
as in the previous calculation; however, with the replica symmetric ansatz parameterized by
M × M matrices Δ. In the end, one obtains the following self-consistency equation:

ψ
(
Δ|q, k

) =
∑

q1...qk−1

P
({qt }k−1

t=1

∣∣q, k
) ∫ [

k−1∏
t=1

dΔtψ(Δt |k, qt , ) dBtμ(Bt)

]

×
∫

dAν(A)δ

⎛⎝Δ −
(

i(λεIM − A) +
k−1∑
t=1

BtΔtB
T
t

)−1
⎞⎠ . (47)

The spectral density is recovered via

ρ(λ) = lim
ε→0+

1

πM
Re

∑
k

p(k)

∫
dΔψphys(Δ|k) Tr Δ, (48)

where

ψphys
(
Δ|k) =

∑
q1...qk

P
({qt }kt=1

∣∣k) ∫ [
k∏

t=1

dΔtψ(Δt |k, qt ) dBtμ(Bt)

]

×
∫

dAν(A)δ

⎛⎝Δ −
(

i(λεIM − A) +
k∑

t=1

BtΔtB
T
t

)−1
⎞⎠ . (49)

Note that in the case M = 1 (that is, when each community is a single vertex), we have
ν(A) = δA,0 and μ(B) = δB,1, and we recover the result of the previous calculation. Also, for
general M, taking L = 1 induces the same simplifications as observed previously.

10
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5. Numerics

In general, the self-consistency equation (39) is not exactly solvable. However, a numerical
solution may be efficiently obtained using population dynamics [14, 30]. Although we will
consider mainly the case L = 1, we describe this numerical procedure for the general case.
First, for all possible pairs of generalized degrees (q, k), each density ψ(�|q, k) in (39) is
represented by a population of N variables {�i(q, k)}Ni=1. The following procedure is then
repeated a predefined number of iteration steps:

(1) Choose a pair of generalized degrees (q, k) and a variable �a(q, k) uniformly at random
from its population.

(2) Randomly select a set of generalized degrees {q}k−1
t=1 according to the distribution

P
({qt }k−1

t=1

∣∣q, k
)
.

(3) Choose k − 1 variables
{
��1(k, q1), . . . ,��k−1(k, qk−1)

}
uniformly at random from their

populations.
(4) Assign

(
iλε +

∑k−1
t=1 ��t

(k, qt )
)−1 → �a(q, k).

This procedure is adapted straightforwardly to find a numerical solution of ψphys(�|k) using
(41), which is then used to calculate the spectral density from (40). To assess our results
we compare our analytical findings with results from numerical diagonalization of graphs.
Although the starting point of our calculations was the ensemble definition (3), the final
equations are phrased only in terms of the resulting generalized degree statistics. It is
therefore appropriate to compare our results directly to data coming from random graphs
with prescribed generalized degree statistics, without concerning ourselves with intermediate
step of determining a suitable choice of weight WN(C). For L = 1, we heuristically adapt the
Steger and Wormald algorithm [31]6 to generate graphs with a given connected degree–degree
distribution P(k, k′) in the following way: given a degree sequence k = (k1, . . . , kN) with a
number of edges m = 1

2

∑N
i=1 ki iterate the following procedure:

(1) Let E be a set of assigned edges, k̂ = (̂k1, . . . , k̂N ) an N-tuple of integers.
(2) Initialize E = ∅, k̂ = k.
(3) Choose two vertices vi, vj ∈ V with probability pij ∝ P(ki, kj )̂ki k̂j and (vi, vj ) ∈ E.

Reduce k̂i , k̂j by 1.
(4) Repeat step 3 until no more edges can be added to E.
(5) If |E| < m report failure otherwise output graph.

The input for this algorithm is the degree sequence of the graphs to be generated; however, our
results are expressed in terms of the degree distribution p(k). We therefore need to generate
degree sequences which are compatible with p(k). We discuss two possibilities:

• Random degree sequence. For each instance, the degrees are randomly drawn from p(k).
There is a chance that no graph can be generated exactly fitting the resulting degree
sequence k. In this case, the degree sequence is said to be non-graphical. To deal with
this, one may choose either to check the graphicality of k before generating graphs, or
simply accept all graphs generated regardless of whether they fail step 5. There are
various ways to check graphicality, for instance, a theorem of Erdős and Gallai states that
a degree sequence k with k1 � · · · � kN and

∑N
i=1 ki even is graphical if and only if, for

all n = 1, . . . , N − 1,
n∑

i=1

ki � n(n − 1) +
N∑

i=n+1

min{ki, n}. (50)

6 We have also tried an adapted version of the algorithm suggested in [32] with similar results.
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For a discussion on graphicality and the generation of random graphs, see [33].
• Fixed degree sequence. Select a set of positive integers {N,N1, N2, . . .} such that

N = ∑
k Nk and p(k) � Nk/N . We then generate random degree sequences with

N1 vertices of degree one, N2 vertices of degree 2, and so on.

In our experience, the adapted Steger–Wormald algorithm yields graphs with the desired
properties and produces almost no failures, provided one selects the appropriate method of
generating degree sequences.

5.1. Case L = 1. Correlated degrees

Let us consider a graph ensemble in which the degrees of neighbouring vertices are correlated,
that is, P(k, k′) does not factorize. For the sake of simplicity, we consider graphs whose
vertices can only have degrees 2, 3 and 4, with the following degree distribution p(k) and
conditional distribution P(k′|k):

p(k) = 18
37δk,2 + 4

37δk,3 + 15
37δk,4,

P (k′|k) = 2
3δk,2δk′,2 + δk,3δk′,3 + 4

5δk,4δk′,4 + 1
5δk,4δk′,2 + 1

3δk,2δk′,4.
(51)

To compute the spectral density of the resulting ensemble, we solve the self-consistency
equation (42) using population dynamics as described previously. In this particular case, for
each value of k ∈ {2, 3, 4} the corresponding density ϕ(�|k) is represented by a population
of N = 104 variables {�i(k)}Ni=1, which are iterated over 200 MC steps. The spectral density
is then computed via (44) and (43). To obtain smooth results, the spectral density is averaged
over a further 50 MC steps.

For comparison, we have also calculated the spectral density by numerically diagonalizing
1000 graphs of size N = 2000. In this case, each instance is produced by first generating a
degree sequence k = (k1, . . . , kN) according to p(k) and then applying the adapted Steger–
Wormald algorithm as described previously. We have checked that both methods of generating
the degree sequences produce equivalent results for large samples and that the number of
failures of the algorithm is negligible compared to the sample size.

The results of population dynamics and numerical diagonalization are presented in
figure 1 which, apart from peaks at λ = 3 and λ � 3.7 due to finite size effects, shows
excellent agreement.

Note from the choice of P(k′|k) that there is a bias towards edges between vertices of
the same degree, which suggests that the spectral density should share some features with the
spectral densities of regular graphs of degrees 2, 3 and 4. Indeed, there are peaks close to ±2
and ±√

8, coming from peaks in the spectral density of regular graphs of degree 2 and 3, and
the domain of the spectral density is approximately [−2

√
3, 2

√
3], the domain of the spectral

density of the regular graph of degree 4.
We consider next an ensemble with a power-law degree distribution and correlated

degrees. Such models arise often in the study of real world complex networks. We have
chosen P(k, k′) ∝ τ kk′

, where τ < 1, with a maximum value for k being kmax. In the limits
kmax → ∞ and τ → 1, this choice results in a power-law degree distribution with exponent
2, though for the purpose of simulations, we will take τ = 0.999, and keep kmax finite.

We use the previously explained algorithm to generate graphs with distribution P(k, k′).
For graphs of size N = 2000, it is necessary to take a rather low maximum degree
kmax = 45(�√

N); if kmax is taken any larger, additional correlations occur between high
degree vertices [34], and the failure rate becomes unacceptable. Alternatively, we could
have larger values of kmax by increasing the graph size, but that would make the numerical

12
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Figure 1. Comparison of the results of population dynamics (blue line) and direct diagonalization
(red histogram) for the choice of P(k′|k) given in (51). To construct the histogram, we use
the adapted Steger–Wormald algorithm to generate 1000 graphs of size N = 2000. The degree
sequences were generated randomly according to p(k) given in (51) and only eight failures were
reported.

Figure 2. Comparison of the results of population dynamics (blue line) and direct diagonalization
(red histogram) for the choice P(k, k′) ∝ τ kk′

, where τ = 0.999 and kmax = 45. The adapted
Steger–Wormald algorithm was used to generate 500 graphs of size N = 2000, whose eigenvalues
were used to construct the histogram.

diagonalization computationally expensive. The degree sequences are generated randomly
and checked for graphicality before generating the graph.

The spectral density can again be computed via population dynamics. Figure 2 shows a
comparison between the results of population dynamics and a histogram of eigenvalues from
500 random graphs of size N = 2000. In this case, we take a population of N = 103 variables
{�i(k)}Ni=1, which are iterated over 100 MC steps. The spectral density is then averaged over
a further 50 MC steps.

As before some of the salient features of the spectral density can be intuitively explained
in terms of the underlying graph structure. First we note that the spectral density for kmax = 45
and τ = 0.999 has a bounded support as expected due to the Perron–Frobenius theorem, but
as we take kmax → ∞ and τ → 1, the mean degree diverges and the spectral density presents
heavy tails. It is interesting to analyse the contribution of vertices of high degree to the
spectral density. As mentioned in [8], for such vertices it may be sufficient to consider only
the mean behaviour of the neighbouring vertices. In this effective medium approximation

13
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Figure 3. Detail of the tail of the spectral density for the choice P(k, k′) ∝ τ kk′
, where τ = 0.999

and kmax = 400. The continuous blue line is the full result from population dynamics, with the
labelled black lines being isolated contributions from vertices of high degree. The dashed red line
shows an estimate for the tail derived from the effective medium approximation.

(EMA) the approximate behaviour of the tails for very large |λ| reads ρ(λ) � 2kλp(kλ)/|λ|,
where kλ = λ2 + O(1). A more rigorous analysis in [35] states that the largest eigenvalues
of graphs with heavy-tailed degree distributions occur close to the square roots of the largest
degrees.

In figure 3, we show the results of population dynamics simulations in the tail of the
spectral density for a much larger maximum degree of kmax = 400. The approximate curve
given by the EMA gives a reasonable fit with the result of the simulation and, as expected, the
density drops dramatically shortly after

√
kmax = 20. The contributions to the density coming

from high degree vertices can be isolated in the output of the population dynamics algorithm;
we have included in figure 3 contributions from several high degrees k, each of which exhibits
sharp peak close to

√
k.

The other main feature of the density shown in figure 2 is the presence of Dirac delta
peaks at −1, 0 and 1 whose weight may be bounded by using the distributions p(k) and
P(k|k′). For instance, the weight to the peaks at ±1 has contributions from connected pair
of vertices of degree 1, which for the choice kmax = 45 and τ = 0.999 have a likelihood of
p(1)P (1|1)/2 = 0.0031, not far from the exact weight of 0.0037 obtained from numerical
diagonalization. A similar intuitive argument can be used to obtain a bound for the weight of
the Dirac delta peak at zero, whose appearance is due to dead-end vertices [8, 36].

5.2. Case L = 2. Levels of approximation

Suppose that the exact knowledge of a graph ensemble is reduced solely to a set of
statistical properties captured by, for instance, the degree distribution p(k) and the conditional
distribution P(k|k′). Whilst in a few cases such quantities suffice to fully characterize the
graph ensemble, this is not generally true. We would like to understand in which way the lack
of more accurate information affects the spectral density.

With this in mind let us consider a graph ensemble with generalized degrees {ki}Ni=1 such
that ki ∈ {κ2, κ3, κ4}, where

κ2 =
(

2
7

)
, κ3 =

(
3
6

)
, κ4 =

(
4
8

)
. (52)
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Figure 4. Left: a typical neighbourhood of a vertex of degree 3 of a random graph specified by (52).
Middle: a neighbourhood of a vertex of degree 3 in a random graph with degree distribution (53a)
and P(k|k′) given by (53b). Right: a neighbourhood of a vertex of degree 3 in an uncorrelated
random graph with degree distribution (53a).

This ensemble is composed of graphs with vertices of degrees 2, 3 and 4. Moreover, those
vertices of degree 2 must be connected to one vertex of degree 3 and one of degree 4, and
those of degrees 3 and 4 must be connected to vertices of degree 2 only. A portion of such
graph is shown in the leftmost part of figure 4.

For this graph ensemble, a quick counting argument gives the following expressions for
p(k) and P(k|k′):

p(k) = 12

19
δk,2 +

4

19
δk,3 +

3

19
δk,4, (53a)

P(k|k′) = δk,2δk′,4 + δk,2δk′,3 +

(
1

2
δk,3 +

1

2
δk,4

)
δk′,2, (53b)

knowledge of which does not fully characterize the graph ensemble. Note that this example
is such that the set of self-consistency equations (39) can be solved exactly. To do so, we first
need the conditional distribution P

({qt }k−1
t=1

∣∣q, k
)

which in this case reads

P(κ3|κ4, κ2) = 1, P (κ4|κ3, κ2) = 1,

P (κ2, κ2|κ2, κ3) = 1, P (κ2, κ2, κ2|κ2, κ4) = 1,

or zero otherwise. This results in a set of self-consistency equations for the densities
{ψ(�|κ3, κ2), ψ(�|κ2, κ3), ψ(�|κ4, κ2), ψ(�|κ2, κ4)} that admits a solution of the type
ψ(�|κa, κb) = δ(� − �a,b), with �a,b obeying a simple set of algebraic equations

�3,2 = 1

iλε + �2,4
, �4,2 = 1

iλε + �2,3
, �2,3 = 1

iλε + 2�3,2
, �2,4 = 1

iλε + 3�4,2
.

(54)

Finally, to find an expression for the spectral density, we first need the distribution P
({qt }kt=1

∣∣k)
which in this case reads

P(κ3, κ4|κ2) = 1
2 , P (κ4, κ3|κ2) = 1

2 ,

P (κ2, κ2, κ2|κ3) = 1, P (κ2, κ2, κ2, κ2|κ4) = 1,

or zero otherwise. This yields

ρ(λ) = lim
ε→0+

1

19π
Re

[
12

iλε + �2,3 + �2,4
+

4

iλε + 3�3,2
+

3

iλε + 4�4,2

]
. (55)
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Upon solving (54), plugging the solutions into (55) and carefully analysing the poles, we can
write

ρ(λ) = 5

19
δ(λ) +

1

19
δ(λ +

√
3) +

1

19
δ(λ −

√
3)

+
12|2λ2 − 7|

√
−25 − λ2(−7 + λ2)(14 − 7λ2 + λ4)

19π |λ(λ2 − 4)(λ2 − 7)(λ2 − 3)| IR(λ), (56)

with R = [
λ−

+ , λ−
−
] ∪ [

λ+
−, λ+

+

]
and

λμ
σ = 1

2

√
14 + 2μ

√
21 + 8σ

√
6, (57)

with σ,μ ∈ {−, +} and where IR(λ) = 1 if |λ| ∈ R or zero otherwise.
This example was chosen specifically to keep the local structure of the graphs deterministic

and thus make equations (39) exactly solvable in the case L = 2. If we reduce the statistical
information we have about the ensemble, either by taking L = 1, or assuming the degrees to
be uncorrelated, the local graph structure becomes random, and the resulting expressions are
no longer exactly solvable. Figure 4 shows the randomizing effect of these simplifications.

We have used population dynamics to compute the spectral density of random graphs with
degree distribution (53a) and degree–degree correlations (53b), as well as uncorrelated random
graphs with degree distribution (53a). For each degree, the population size isN = 104, iterated
over 200 MC steps. The spectral density is then averaged over 50 MC steps. The results are
shown in figures 5(b) and (c), alongside histograms of the eigenvalues of 1000 graphs of size
N = 1900, generated using the adapted Steger–Wormald algorithm7. Figure 5(a) shows the
exact spectral density given by (56), plotted alongside a histogram of eigenvalues obtained
from randomly generated graphs of that type.

In figure 5, the effects of reducing knowledge of an ensemble (and hence increasing
randomness) are clearly visible. In addition to a general smoothing effect, which one might
expect, the most striking feature is the appearance of gaps in the spectral density. When the
ensemble is fully specified by (52), the continuous part of the spectral density is divided into
four disjoint components. When one specifies only the degree distribution and degree–degree
correlations, the number of components reduces to two, and when only the degree distribution
is known, there is no gap in the density at all.

The appearance of the gap can be traced back to the periodicity in the random graph
ensembles (see [37]). For instance, in the original ensemble a walker moving away from a
central vertex will repeatedly visit vertices of degree sequence {. . . , 2, 4, 2, 3, 2, 4, 2, 3, . . .}
of periodicity 4 which is also manifestly explicit in equations (54). In the case that the degree–
degree correlations are specified, whilst the degree sequence of a walk is now random and
therefore not strictly periodic, it is still true that every other vertex visited will have degree 2
(see figure 4), periodicity which is enough to split the spectral density into two components.
In the last case, where only the degree distribution is known, the sequence is fully random (see
figure 4), and the resulting spectral density has no gap.

5.3. Community structure

The population dynamics algorithm used to solve (39) is easily adapted to solve the equivalent
self-consistency equation (47) for the communities model; one simply initializes populations
of M × M matrices Δ and updates them according to (47).

7 It is necessary to slightly modify the adapted Steger–Wormald algorithm to make sure the constraints specified by
(52) are met.
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(a) Comparison of the exact spectral density given by equation (56) (blue line) and direct
diagonalisation (red histogram). We have checked the isolated peaks at λ ±

√
7 are

due to finite size effects.

(b) Comparison of population dynamics with degree distribution(56a)
(53b)

and degree-degree
correlations (blue line) and direct diagonalisation (red histogram). To visualise the
Dirac delta peak we have taken ε = 10−6 .

Comparison of population dynamics with degree distribution only (blue line) and
direct diagonalisation (red histogram).
(c)

Figure 5. Comparison of theoretical results (blue lines) and direct diagonalization (red histograms)
for the different levels of approximation to the ensemble specified by (52). In plot (a), the blue
line shows the exact result for the spectral density, given by (56); in plots (b) and (c) the result of
population dynamics is shown. To generate graphs we use the adapted Steger–Wormald algorithm
explained in the text. In each case, 1000 graphs of size N = 1900 were generated and diagonalized.

The presence of communities in a graph typically results in a very different spectral
density; to illustrate this, we consider a simple choice for the community structure ensemble.
Suppose we have communities given by the complete graph on M vertices, connected
in a Poissonian random graph of average degree c, in which connected communities
are joined by a single randomly drawn edge. In the weight (4), this corresponds to
the choices Q(ki , kj ) = 1 for all i, j , ν(A) = (∏

a δAaa,0
)(∏

a =b δAab,1
)
, and μ(B) =

M−2 ∑
a,b δBab,1

∏
(c,d)=(a,b) δBcd ,0 .
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Figure 6. Comparison of the results of population dynamics (blue line) and direct diagonalization
(red histogram) for the community structure ensemble described in the text. The grey curve shows
the high connectivity limit for this ensemble.

Taking M = 5 and c = 5, we use population dynamics to solve (47) for this ensemble;
the spectral density is then computed using (48). To compare with the results of direct
diagonalization, 1000 graphs of size N = 5000 were generated. A histogram of their
eigenvalues, alongside the result of population dynamics, is shown in figure 6.

It is well known that in the limit c → ∞ the spectral density of a Poissonian random
graph with average degree c, and edges of weight 1/

√
c, converges to Wigner’s semi-circular

distribution [5, 13]. We can compute a generalization of this result for the community ensemble
considered here through an appropriate treatment of the self-consistency equation (47). It is
necessary to re-weight the edges between communities, in order to keep the spectral density
bounded as c → ∞, we take μ(B) = M−2 ∑

a,b δBab,
√

M/c

∏
(c,d)=(a,b) δBcd ,0. Keeping only

the terms relevant in the c → ∞ limit, we obtain an expression for the mean Δ,

〈Δ〉 = (i(λεIM − KM) + c〈B〈Δ〉BT 〉B)−1, (58)

where KM is the connectivity matrix of the complete graph on M vertices. For the above choice
of μ(B), we have 〈BΔBT 〉 = (1/cM)�IM , where � = (1/M) Tr〈Δ〉. Diagonalizing KM,
we obtain a cubic equation for �,

� =
(

M − 1

M

)
1

iλε + � + i
+

(
1

M

)
1

iλε + � − (M − 1)i
. (59)

In the case M = 5, we solve (59) to find the following expression:

ρ(λ) =
√

3

2π

∣∣∣∣u − λ2 − 3λ + 18

9u

∣∣∣∣ ID(λ) , (60)

where

u = ∣∣ 1
27λ3 − 1

6λ2 − 2λ + 4 + 1
18

√
3d

∣∣1/3
, (61)

and d = −25λ4 + 156λ3 + 72λ2 − 1296λ + 864. The domain is given by ID(λ) = 1 if d > 0,
and zero otherwise.

6. Conclusions

Past work on the spectral density of random graphs has typically been confined to simple
ensembles in which at most the degree distribution is specified and even then exact results
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have only been obtained relatively recently. At the same time, the field of complex networks
has gained a great deal of attention from all over the scientific community. Before the analysis
of spectral density can be used to provide insights into the behaviour and characterization of
complex networks, progress must first be made to expand the class of ensembles for which
exact results are obtainable.

In this paper, we have sought to do just this through the calculation of the spectral
density of random graphs with constrained topologies. Complex correlations between the
degrees of non-neighbouring vertices are incorporated in the constrained generalized degree
ensemble, and we also introduce a simple extension of this model to one featuring a community
structure. The important statistical properties of the constrained degree ensemble are captured
in the distribution (5), which we compute via a saddle point analysis in the large N limit. This
calculation foreshadows the replica calculation of the spectral density and provides important
insight.

For the problem of determining the mean spectral density, we take standard steps to
map the problem onto one of the interacting systems of dynamical variables to which the
replica method is applied. Following recent advances, the form of replica symmetric ansatz
is identified as a superposition of Gaussians. Exploiting the insights gained in the earlier
calculation, we obtain closed expressions for the spectral density in terms of the statistical
properties of the graph ensemble (39). Similar equations are found for the community structure
ensemble (47).

Though the resulting equations may not often have easily found analytic solutions, they
can be efficiently solved numerically using the population dynamics algorithm described
earlier. In this way, it is possible to analyse the spectral density of a given graph ensemble
without the need to generate and diagonalize large numbers of graphs. An instance of this is
provided by the discussion of the tails in the example with a power-law degree distribution;
here the results of population dynamics could not feasibly be obtained by diagonalizing
random matrices (for kmax = 400, we would require graphs of around 1.6 × 105 vertices).
We hope that the methods discussed here will prove useful tools in the study of complex
networks.

Although as we have demonstrated the statistics of generalized degrees can have a
significant impact on the spectral density of the graph ensemble, this is certainly not the
only factor at work. One aspect of the topology of complex networks which may play an
important role, but which we have not considered so far, is the statistics of the loops in the
graph. Unfortunately, knowledge of the generalized degrees of a graph gives no information
about loops, and hence the constrained generalized degree ensemble is not likely to be useful
to study of their effect on spectral density. Looking to the future, it seems the next major step
forward in the analysis of spectral density of random graphs will require techniques capable
of handling the effects of loops. Several new techniques to correct for the presence of loops in
related problems have a appeared recently [38–40], and we hope that similar ideas may also
be applied to the study of spectral density.
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[21] Bianconi G, Coolen A C C and Pérez Vicente C J 2008 Phys. Rev. E 78 016114
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